零点小说网

零点小说网 > 科幻小说 > 脑域科技树 > 正文 第20章、ABC猜想

正文 第20章、ABC猜想(第1页/共3页)

在学习空隙,他也抽空不断完善《马氏数学解析1.0》的编译,他准备在毕业前,用这前所未有软件,再解决一道数学难题,论证《ABC猜想》。

若是论证一个猜想可能被大家认为是天才,若再论证一个数学难题,甚至由此证明他的新数学体系,那么他才可能被全球学术界认同为数学领域的大师地位。

《ABC猜想》是数论领域的重要猜想,由乔瑟夫·奥斯达利及大卫·马瑟在1985年提出,因此又称为“奥斯达利–马瑟”猜想。

数学家戈德菲尔德曾说过:“ABC猜想是丢番图方程尚未解决的问题中最为重要的一个!”

一般情况下,数论领域的猜想表述起来都比较精确直观。

比如已经被安德鲁·怀尔斯证明了的费马大定理,可以直接表示为:当整数n >2时,关于x, y, z的方程 xn + yn = zn 没有正整数解。

又如马由已证明的《哥猜》,一句话就能看懂:任一大于2的偶数都可写成两个质数之和。

但《ABC猜想》却是个例外。

它理解起来非常抽象。

简单地说,就是有3个数:a、b和c =a+b,如果这3个数互质,没有大于1的公共因子,那么将这3个数不重复的质因子相乘得到的d,看似通常会比c大。

举个例子:a=2,b=7,c=a+b=9=33。

这3个数是互质的,那么不重复的因子相乘就有d=273=42>c=9。

大家还可以实验几组数,比如:3+7=10,4+11=15,也都满足这个看起来正确的规律。

但是,这只是看起来正确的规律,实际上存在反例!

由荷兰莱顿大学数学研究所运营的ABC@home网站就在用基于BOINC的分布式计算平台分布式计算寻找ABC猜想的反例,其中一个反例是3+125=128:其中125=53 ,128=27,那么不重复的质因子相乘就是352=30,128比30要大。

事实上,计算机能找到无穷多的这样反例。

于是我们可以这样表述ABC猜想,d“通常”不比c“小太多”。

怎么叫通常不比c小太多呢?

如果我们把d稍微放大一点点,放大成d的(1+ε次方),那么虽然还是不能保证大过c,但却足以让反例从无限个变成有限个。

这就是ABC猜想的表述了。 ABC猜想不但涉及加法(两个数之和),又包含乘法(质因子相乘),接着还模糊地带有点乘方(1+ε次方),最坑爹的是还有反例存在。

因此,这个猜想的难度可想而知。

事实上,除了尚未解决的涉及多个数学分支的猜想界皇冠黎曼猜想以外,其他数论中的猜想,诸如哥德巴赫猜想、孪生素数猜想,以及已经解决的费马大定理,基本上都没有ABC猜想重要。

这是为何呢?

首先,ABC猜想对于数论研究者来说,是反直觉的。

历史上反直觉的却又被验证为正确的理论,数不胜数。

一旦反直觉的理论被证实是正确的,基本上都改变了科学发展的进程。
『加入书签,方便阅读』
-->> 本章未完,点击下一页继续阅读(第1页/共3页)